Database Applications	Part IV	Eman Alnaji
[image:]

Modul Number: 0750362
Module Name: Database Applications

Teacher: Eman Alnaji

Part IV
PL/SQL

[bookmark: _GoBack]
What is PL/SQL?
· Procedural programming language
· Uses detailed instructions
· Processes statements sequentially
· Combines SQL commands with procedural instructions
· Used to perform sequential processing using an Oracle database
· PL/SQL supports variables, conditions, loops and exceptions.
· PL/SQL blocks can include control flow and DML statements.
When is PL/SQL Useful?
· When something is too complicated for SQL
· When conditional branching and looping are needed
Basic Structure:
[image:]

PL/SQL Program Lines:
· May span multiple text editor lines
· Each line ends with a semicolon
· Text is not case sensitive
Comment Statements:
· Block of comments are delimited with /* */
/* <comment that spans more than one line of code> */
· Single comment line starts with 2 hyphens
	-- comment on a single line
Variables:
Variables can have:
· any SQL data type, such as CHAR, DATE, or NUMBER
· or any PL/SQL data type, such as BOOLEAN or BINARY_INTEGER.
· Reference data types:
· Reference a database item
· Assume data type of item
· %TYPE: assumes data type of field
· %ROWTYPE: assumes data type of entire row
· Syntax for declaring a variable:
variable_name data_type_declaration;
· Examples:
· part_no NUMBER(4);
· in_stock BOOLEAN;
Arithmetic Operators:
O a [image:]
Assigning Values to Variables:
First: Assignment Statement
· Assignment operator: :=
· Variable being assigned to a new value is on left side of assignment operator
· New value is on right side of operator
student_name := ‘John Miller’;
student_name := current_student;
 tax := price * tax_rate;
Second: Selecting database value into a variable.
SELECT salary * 0.10
INTO bonus
FROM employee
WHERE SSN = SSN_In;

Displaying PL/SQL Output in SQL*Plus
· Command to activate memory buffer in SQL*Plus to enable output from PL/SQL programs:
	SQL> SET SERVEROUTPUT ON
· Command to output data from a PL/SQL program in SQL*Plus:
	DBMS_OUTPUT.PUT_LINE(‘output string’);
	DBMS_OUTPUT.PUT_LINE(‘Employee Salary: ’|| Salary);
- - || is a concatenation operator
Executing a PL/SQL Program in SQL*Plus
· Copy program code from Notepad to SQL*Plus
· Type / to execute
Character String Functions in PL/SQL
· Concatenating strings: joining 2 or more character strings into a single string
· Concatenation operator: ||
s_first_name := ‘Sarah’
s_last_name := ‘Miller’
s_full_name := s_first_name || ‘ ’ || s_last_name

PL/SQL Character String Functions
· These functions were discussed before, but here are some examples using them in PL/SQL
· RTRIM: removes blank trailing spaces
	cust_address := RTRIM(cust_address);
· LENGTH: returns string length (number of characters)
	address_length := LENGTH(cust_address);
· UPPER, LOWER: changes characters to all upper or lower case
	s_name := UPPER(s_name);
	s_name := LOWER(s_name);
· INSTR: searches a string and looks for a matching substring and returns its starting position
starting_position := INSTR(string_being_searched, search_string>);
blank_position := INSTR(‘Sarah Miller’, ‘ ’);
· SUBSTR: extracts a specific number of characters from a string, starting at a given point
extracted_string := SUBSTR(string_being_searched, starting_point, number_of_characters_to_extract);
s_first_name := SUBSTR(‘Sarah Miller’, 1,5);
NULL Values in Assignment Statements
· Until a value is assigned to a variable, the variable’s value is NULL
· Performing an arithmetic value on a NULL value always results in a NULL value
· Advice: Always initialize variable values
PL/SQL Selection Structures (IF Statement)
· IF/END IF:
IF condition THEN
program statements
END IF;
· IF/ELSE/END IF:
IF condition THEN
program statements
ELSE
alternate program statements
 END IF;

· IF/ELSIF:
IF condition1 THEN
program statements;
ELSIF condition2 THEN
		alternate program statements;
ELSIF condition3 THEN
		alternate program statements;
. . .
ELSE
		alternate program statements;
END IF;
PL/SQL Comparison Operators
[image:]
Evaluating NULL Conditions in IF/THEN Structures
· If a condition evaluates as NULL, then it is FALSE
· How can a condition evaluate as NULL?
· It uses a BOOLEAN variable that has not been initialized
· It uses any other variable that has not been initialized
Example:
IF acct_balance >= debit_amt THEN
 UPDATE accounts SET bal = bal - debit_amt
 WHERE account_id = acct;
ELSE
 INSERT INTO temp
 VALUES (acct, acct_balance, 'Insufficient funds');
END IF;

PL/SQL Loops
· Loop: repeats one or more program statements multiple times until an exit condition is reached
· Pretest loop: exit condition is tested before program statements are executed
· Posttest loop: exit condition is tested after program statements are executed
LOOP … EXIT Loop
[image:]
LOOP … EXIT WHEN Loop
[image:]

WHILE Loop
[image:]
Numeric FOR Loop
[image:]
Examples:
FOR num IN 1..500 LOOP
 INSERT INTO roots VALUES (num, SQRT(num));
END LOOP;

WHILE salary <= 2500 LOOP
 SELECT salary, mgr_ssn, lname
 INTO salary, mgr_ssn, last_name
 FROM employee
 WHERE ssn = mgr_ssn;
 END LOOP;

Cursors
A cursor is a pointer to a private SQL area that stores results of a SELECT statement.
Types of Cursors
· Implicit
· Explicit
Implicit Cursors
· Created automatically every time you use an INSERT, UPDATE, DELETE, or SELECT command
· Doesn’t need to be declared
· Can be used to assign the output of a SELECT command to one or more PL/SQL variables
· Can only be used if query returns one and only one record
Explicit Cursors
· Must be declared in program DECLARE section
· Can be used to assign the output of a SELECT command to one or more PL/SQL variables
· Can be used if query returns multiple records or no records
Using an Explicit Cursor
· Declare the cursor
· Open the cursor
· Fetch the cursor result into PL/SQL program variables
· Close the cursor

Declaring an Explicit Cursor
DECLARE
		CURSOR cursor_name IS SELECT_statement;
Opening an Explicit Cursor
OPEN cursor_name;
Fetching Explicit Cursor Records
FETCH cursor_name
INTO variable_name(s);
Closing an Explicit Cursor
CLOSE cursor_name;
Processing an Explicit Cursor
· LOOP ..EXIT WHEN approach:
OPEN cursor_name;
LOOP
	FETCH cursor_name INTO variable_name(s);
	EXIT WHEN cursor_name%NOTFOUND:
END LOOP;
CLOSE cursor_name;
· Cursor FOR Loop approach:
FOR variable_name(s) in cursor_name LOOP
	additional processing statements;
END LOOP;
Explicit Cursor Attributes

[image:]
Using Reference Data Types in Explicit Cursor Processing
· Declaring a ROWTYPE reference variable:
DECLARE
	reference_variable_name cursor_name%ROWTYPE;
· Referencing a ROWTYPE reference variable:
reference_variable_name.database_field_name

PL/SQL Example1:
DECLARE
 Emp_name VARCHAR2(10);
 Cursor c1 IS SELECT Ename FROM Emp_tab
 WHERE Deptno = 20;
BEGIN
 OPEN c1;
 LOOP
 FETCH c1 INTO Emp_name;
 EXIT WHEN c1%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(Emp_name);
 END LOOP;
END;
PL/SQL Example2:
DECLARE
Emp_number INTEGER := 9999;
Emp_name emp.empname%type;
BEGIN
 SELECT Ename INTO Emp_name
 FROM Emp_tab
 WHERE Empno = Emp_number; -- no such number
 DBMS_OUTPUT.PUT_LINE('Employee name is ' || Emp_name);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('No such employee: ' || Emp_number);
 END;

PL/SQL Example3:
DECLARE
 CURSOR c1 is
 SELECT fname, ssn, salary FROM employee
 ORDER BY salary DESC; --start w/ highest paid emp
 my_ename VARCHAR2(10);
 my_empno CHAR(9);
 my_sal NUMBER(10,2);
BEGIN
 OPEN c1;
 FETCH c1 INTO my_ename, my_empno, my_sal;
 WHILE C1%FOUND LOOP
 DBMS_OUTPUT.PUT_LINE (MY_EMPNO||','||MY_SAL);
 UPDATE employee
 SET salary = salary * 1.1
 WHERE ssn = my_empno;
/*By this statement you will update only the employees retrieved by the cursor.*/
 FETCH c1 INTO my_ename, my_empno, my_sal;
 END LOOP;
CLOSE c1;
COMMIT; /* This will save all updates applied on Employee table */
EXCEPTION
 WHEN OTHERS THEN
 ROLLBACK;
/*If any error occurred, any updates applied on the employee table will not be saved and reversed as the state it was before applying this program */
END;
PL/SQL Exception Handling
· All error handling statements are placed in the EXCEPTION program block
· Exception handler: program command that provides information about an error, and suggest correction actions
Predefined Exceptions
· Common errors that have been given predefined names that appear instead of error numbers
[image:]

Exception Handler Syntax for Predefined Exceptions
[image:]
Exercise:
Apply the following:
· Create a new table: Employee2 (
· Fname, LName, SSN, Salary, Salary2, Dsc
Write a PL/SQL block that applies the following:
· For each employee (in the original table employee), insert a new record in table employee2, with the same information (fname, lname, ssn, salary), and compute salary2 and dsc, as follows:
· If the employee worked more than 40 hours on all projects
· Put “Good” in his description and give him a 10% raise
· Otherwise: Put “Bad” in his description
· Find the employee with the highest salary and print his name and SSN
· Display the name and salary of employee with SSN “111997788”.
· If no employee has that SSN, display “Employee not found”
1

image3.png
** Exponentiation
* Multiplication

/ Division

+ Addition

- Subtraction

- Negation

2¥*%3
2*3
9/2
3+2
3-2

8

6

4.5

5

1

Negative 5

image4.png
Description
Equal

Not Equal
Greater Than
Less Than

Greater Than or Equal
To

Less Than or Equal To

Example
Count=5
Count<>5
Count>5
Count<5
Count>=5

Count<=5

image5.png
LOOP
program statements
IF condition THEN
EXIT;
END IF;
more program statements
END LOOP;

image6.png
LOOP

program statements

EXIT WHEN condition;
END LOOP;

image7.png
WHILE condition

or

program statements
END LOOP;

image8.png
FOR counter variable
IN start value .. end value
LOOP

program statements
END LOOP

Preset
number of

iterations

image9.png
Attribute
%NOTFOUND

%FOUND

%ROWCOUNT
%ISOPEN

Return Value

TRUE when no rows left
to fetch; FALSE when
rows left to fetch

TRUE when rows left to
fetch; FALSE when no
rows left to fetch
Number of rows a cursor
has fetched so far
TRUE if cursor is open
and FALSE is cursor is
closed

image10.png
Error Code
‘ORA-00001

‘ORA-01001
ORA-01403
ORA-01422

ORA-01476
ORA-01722
ORA-06502

Exception Name
DUP_VAL_ON_INDEX

INVALID_CURSOR
NO_DATA_FOUND
TOO_MANY_ROWS

ZERO_DIVIDE
INVALID_NUMBER
VALUE_ERROR

Description
Unique constraint violated

lllegal cursor operation
Query returns no records
Query returns more rows than
expected

Division by zero

Invalid numeric conversion
Error in arithmetic or numeric
function operation

image11.png
WHEN exceptionl name
exception handling
WHEN exception2 name
exception handling

WHEN OTHERS THEN
exception handling

THEN
statements;
THEN
statements;

statements;

image1.png
0""1 —— &
2)

S
I
PeLpip o

image2.png
DECLARE T
fariable
Variable declarations Declarations I
BEGIN
Program statements Body I
EXCEPTION
Error-handling statements Exception I
Section

END;

