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What is PL/SQL?
· Procedural programming language
· Uses detailed instructions
· Processes statements sequentially
· Combines SQL commands with procedural instructions
· Used to perform sequential processing using an Oracle database
· PL/SQL supports variables, conditions, loops and exceptions.
· PL/SQL blocks can include control flow and DML statements.
When is PL/SQL Useful?
· When something is too complicated for SQL
· When conditional branching and looping are needed
Basic Structure:
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PL/SQL Program Lines:
· May span multiple text editor lines
· Each line ends with a semicolon
· Text is not case sensitive
Comment Statements:
· Block of comments are delimited with /*  */
/* <comment that spans more than one line of code> */
· Single comment line starts with 2 hyphens
	-- comment on a single line
Variables:
Variables can have:
· any SQL data type, such as CHAR, DATE, or NUMBER
· or any PL/SQL data type, such as BOOLEAN or BINARY_INTEGER.
· Reference data types:
· Reference a database item 
· Assume data type of item
· %TYPE:  assumes data type of field
· %ROWTYPE:  assumes data type of entire row
· Syntax for declaring a variable:
variable_name    data_type_declaration;
· Examples:
· part_no NUMBER(4);
· in_stock BOOLEAN; 
Arithmetic Operators:
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Assigning Values to Variables:
First: Assignment Statement
· Assignment operator:  :=
· Variable being assigned to a new value is on left side of assignment operator
· New value is on right side of operator
student_name := ‘John Miller’;
student_name := current_student;
     tax := price * tax_rate;
Second: Selecting database value into a variable.
SELECT salary * 0.10
INTO   bonus
FROM   employee
WHERE  SSN = SSN_In;

Displaying PL/SQL Output  in SQL*Plus
· Command to activate memory buffer in SQL*Plus to enable output from PL/SQL programs:
	SQL> SET SERVEROUTPUT ON 
· Command to output data from a PL/SQL program in SQL*Plus:
	DBMS_OUTPUT.PUT_LINE(‘output string’);
	DBMS_OUTPUT.PUT_LINE(‘Employee Salary: ’|| Salary);  
- - || is a concatenation operator
Executing a PL/SQL Program in SQL*Plus
· Copy program code from Notepad to SQL*Plus
· Type   /  to execute
Character String Functions in PL/SQL
· Concatenating  strings:  joining 2 or more character strings into a single string
· Concatenation operator:  ||
s_first_name := ‘Sarah’
s_last_name := ‘Miller’
s_full_name := s_first_name || ‘ ’ || s_last_name





PL/SQL Character String Functions
· These functions were discussed before, but here are some examples using them in PL/SQL
· RTRIM:  removes blank trailing spaces
	cust_address := RTRIM(cust_address);
· LENGTH:  returns string length (number of characters)
	address_length := LENGTH(cust_address);
· UPPER, LOWER:  changes characters to all upper or lower case
	s_name := UPPER(s_name);
	s_name := LOWER(s_name);
· INSTR:  searches a string and looks for a matching substring and returns its starting position
starting_position := INSTR(string_being_searched, search_string>);
blank_position := INSTR(‘Sarah Miller’, ‘ ’);
· SUBSTR:  extracts a specific number of characters from a string, starting at a given point
extracted_string := SUBSTR(string_being_searched, starting_point,        number_of_characters_to_extract);
s_first_name := SUBSTR(‘Sarah Miller’, 1,5);
NULL Values in Assignment Statements
· Until a value is assigned to a variable, the variable’s value is NULL
· Performing an arithmetic value on a NULL value always results in a NULL value
· Advice:  Always initialize variable values
PL/SQL Selection Structures (IF Statement)
· IF/END IF:
IF condition THEN
program statements
END IF;
· IF/ELSE/END IF:
IF condition THEN
program statements
ELSE
alternate program statements
     END IF;

· IF/ELSIF:
IF condition1 THEN
program statements;
ELSIF condition2 THEN
		alternate program statements;
ELSIF condition3 THEN
		alternate program statements;
. . .
ELSE
		alternate program statements;
END IF;
PL/SQL Comparison Operators
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Evaluating NULL Conditions in IF/THEN Structures
· If a condition evaluates as NULL, then it is FALSE
· How can a condition evaluate as NULL?
· It uses a BOOLEAN variable that has not been initialized
· It uses any other variable that has not been initialized
Example: 
IF acct_balance >= debit_amt THEN
      UPDATE accounts SET bal = bal - debit_amt
         WHERE account_id = acct;
ELSE
      INSERT INTO temp 
      VALUES (acct, acct_balance, 'Insufficient funds');
END IF;

PL/SQL Loops
· Loop:  repeats one or more program statements multiple times until an exit condition is reached
· Pretest loop:  exit condition is tested before program statements are executed
· Posttest loop:  exit condition is tested after program statements are executed 
LOOP … EXIT Loop
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LOOP … EXIT WHEN Loop
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WHILE Loop
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Numeric FOR Loop
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Examples:
FOR num IN 1..500 LOOP
   INSERT INTO roots VALUES (num, SQRT(num));
END LOOP;






WHILE salary <= 2500 LOOP
      SELECT salary, mgr_ssn, lname
      INTO   salary, mgr_ssn, last_name
      FROM   employee
      WHERE  ssn = mgr_ssn;
 END LOOP;

















Cursors
A cursor is a pointer to a private SQL area that stores results of a SELECT statement.
Types of Cursors
· Implicit
· Explicit
Implicit Cursors
· Created automatically every time you use an INSERT, UPDATE, DELETE, or SELECT  command
· Doesn’t need to be declared
· Can be used to assign the output of a SELECT command to one or more PL/SQL variables
· Can only be used if query returns one and only one record
Explicit Cursors
· Must be declared in program DECLARE section
· Can be used to assign the output of a SELECT command to one or more PL/SQL variables
· Can be used if query returns multiple records or no records
Using an Explicit Cursor
· Declare the cursor
· Open the cursor
· Fetch the cursor result into PL/SQL     program variables
· Close the cursor

Declaring an Explicit Cursor
DECLARE
		CURSOR cursor_name IS SELECT_statement;
Opening an Explicit Cursor
OPEN cursor_name;
Fetching Explicit Cursor Records
FETCH cursor_name 
INTO  variable_name(s);
Closing an Explicit Cursor
CLOSE cursor_name;
Processing an Explicit Cursor
· LOOP ..EXIT WHEN approach:
OPEN cursor_name;
LOOP
	FETCH cursor_name INTO variable_name(s);
	EXIT WHEN cursor_name%NOTFOUND:
END LOOP;
CLOSE cursor_name;
· Cursor FOR Loop approach:
FOR variable_name(s) in cursor_name LOOP
	additional processing statements;
END LOOP;
Explicit Cursor Attributes
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Using Reference Data Types in Explicit Cursor Processing
· Declaring a ROWTYPE reference variable:
DECLARE
	reference_variable_name cursor_name%ROWTYPE;
· Referencing a ROWTYPE reference variable:
reference_variable_name.database_field_name





PL/SQL Example1:
DECLARE  
     Emp_name    VARCHAR2(10);   
     Cursor      c1 IS SELECT Ename FROM Emp_tab                  
                              WHERE Deptno = 20;
BEGIN  
   OPEN c1;
      LOOP     
          FETCH c1 INTO Emp_name;     
          EXIT WHEN c1%NOTFOUND;                 
         DBMS_OUTPUT.PUT_LINE(Emp_name);    
     END LOOP;
END; 
PL/SQL Example2: 
DECLARE   
Emp_number   INTEGER := 9999;   
Emp_name     emp.empname%type;
BEGIN
     SELECT Ename INTO Emp_name 
     FROM Emp_tab      
     WHERE Empno = Emp_number;   -- no such number   
      DBMS_OUTPUT.PUT_LINE('Employee name is ' || Emp_name);
EXCEPTION 
  WHEN  NO_DATA_FOUND THEN  
      DBMS_OUTPUT.PUT_LINE('No such employee: ' || Emp_number);
  END; 

PL/SQL Example3:
DECLARE
   CURSOR c1 is
      SELECT fname, ssn, salary FROM employee
         ORDER BY salary DESC; --start w/ highest paid emp
   my_ename VARCHAR2(10);
   my_empno CHAR(9);
   my_sal   NUMBER(10,2);
BEGIN
   OPEN c1;
   FETCH c1 INTO my_ename, my_empno, my_sal;
   WHILE C1%FOUND LOOP
     DBMS_OUTPUT.PUT_LINE (MY_EMPNO||','||MY_SAL);
     UPDATE employee
     SET salary = salary * 1.1
      WHERE ssn = my_empno;    
/*By this statement you will update only the employees retrieved by the cursor.*/
     FETCH c1 INTO my_ename, my_empno, my_sal;
   END LOOP;
CLOSE c1;
COMMIT;    /* This will save all updates applied on Employee table */
EXCEPTION
    WHEN OTHERS THEN
         ROLLBACK;              
/*If any error occurred, any updates applied on the employee table will not be saved and reversed as the state it was before applying this program */
END;
PL/SQL Exception Handling
· All error handling statements are placed in the EXCEPTION program block
· Exception handler:  program command that provides information about an error, and suggest correction actions
Predefined Exceptions
· Common errors that have been given predefined names that appear instead of error numbers
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Exception Handler Syntax for Predefined Exceptions
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Exercise:
Apply the following: 
· Create a new table: Employee2 (
· Fname, LName, SSN, Salary, Salary2, Dsc
Write a PL/SQL block that applies the following:
· For each employee (in the original table employee), insert a new record in table employee2, with the same information (fname, lname, ssn, salary), and compute salary2 and dsc, as follows:
· If the employee worked more than 40 hours on all projects
· Put “Good” in his description and give him a 10% raise
· Otherwise: Put “Bad” in his description
· Find the employee with the highest salary and print his name and SSN
· Display the name and salary of employee with SSN “111997788”.
· If no employee has that SSN, display “Employee not found”
1
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